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Three Dimensional Effects in Fiber Reinforced
Composites Under Compression

by

S. Xu and Y. Weitsman
Abstract

This article demonstrates that the stress and displacement fields in
composites reinforced by hexagonal fiber arrays differ both qualitatively and
quantitatively from results obtained for fiber and matrix layers. The layered
representation is a commonly used approximation for analyzing the
compressive response of composites.

Finite element computational results are presented for the mechanical
fields in uni-axially reinforced fibrous composites subjected to compression
parallel to the fiber direction. The fibers are assumed to deflect in a shearing
mode deformation and both linear and non-linear responses are considered
for the matrix material.

The results exhibit a pronounced three dimensional character, with
significant stress concentrations near the fiber/matrix interfaces and shear
stresses 1y, of magnitudes equivalent to those of 7. All these features are

disregarded by the layered model and may account for its inadequacy in
predicting compressive failure.
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Introduction

With very few exceptions, the modelling of the compressive response
of fiber-reinforced composites is based upon the proposition that fiber and
matrix regions can be represented as layered domains. This simplification
enabled Rosen [1] to predict compressive failure by means of a classical
buckling analysis and has been followed by the great majority of investigators
since. Detailed listings of references can be found in the articles of Shuart [2],
Camponeschi [3], Guynn et al. [4] and Piggott [5]. The above mentioned
exceptions, all employing linear elasticity, occur in the analyses of Sadowsky
et al. [6], Hermann et al. [7], Lanir and Fung [8] and Greszczuk [9], where the
circular shape of the fiber cross-section was recognized in various contexts.
With the exception of Greszczuk, the foregoing articles consider a single fiber,
while the complexity arising from the circular reinforcement geometry is
simplified by Greszczuk by means of an assumed shape function.

All the above models are deficient to various degrees in predicting the
compressive failure of fibrous composites. Most predict failures at load levels
which exceed experimental observations and all predict compressive failure
loads which increase monotonically with fiber volume fraction V. The latter
prediction is negated by experimentally observed trends [10] and [11]*.

The main purpose of the present article is to demonstrate that the
complexities and intricacies of the stress field in fiber reinforced composites
subjected to compression cannot be represented by models which employ
layered geometries. Such models err in two major aspects: (a) they overlook
high local stress concentrations, especially near the fiber matrix interfaces, and
(b) they account for only one shear stress in the matrix (t,;) while discarding a
second component (T,) which is of an equivalent magnitude. These
inadequacies were noted in a recent work [13], by means of an idealized, linear
elastic formulation.

* In a recent article [12], an improved correlation between compressive failure stress and V¢ was
achieved by considering non-uniform fiber spacings. However, that work still employed the

prevailing approximation of layered domains.




An impressive and conclusive experimental evidence for the existence
of local stress concentrations and of three dimensional features arising in
fibrous composites under compression was provided in a recent work by
Lankford [14]. Typical observations which exhibit the foregoing effects are
shown in Figure 1.

Basic Considerations

Consider a composite material, uni-directionally reinforced by a perfect
hexagonal fibrous array extending in the x-y plane as shown in Figure 2a. Let
the fibers run parallel to the z direction, with compression applied in the fiber
direction. Due to symmetry it suffices to analyze the representative
rectangular area PQRS shown in Figure 2b.

For graphite/PEEK (APC-2) composites with fiber volume fraction
V¢ = 0.4 we have a = 4um and b = 6um in Figure 2b. In addition, we presume a
lateral deflection that varies sinusoidally in z with waviness length 2L,
where L = 800a. Such waviness, sketched in Figure 3a, is attributable to
processing non-uniformities, as reported by several investigators [15] and [16].
Consequently, it is possible to confine the computations to the rectangular

block - L/2 <z <L/2 with the cross-sectional area shown in Figure 3b.
The computations assumed isotropic fiber and employed values of
E¢= 214 GPa, and v¢=0.3. The one dimensional non-linear shear response of

the matrix shown by curve "a" in Figure 4 [15] was expressed by the relation

y=1/A+(1 /B)q ,where A = 3096, B = 169.93, and q = 4.2 (A, B and 1 in MPa).

The above expression was extended to the three dimensional case by means of
the Von-Mises criterion. Accordingly, the relation between the effective

strain €e and effective stress Oe is given by letting €e = %’Y and o, = Y31 in the

foregoing expression. The resulting relation among effective quantities is
shown by the curve "e" in Figure 4.

To assess the significance of the non-linear matrix response,
comparative computations were performed for an assumed isotropic linear
elastic matrix behavior with Ey = 6.5 GPa and v, = 0.3.

In addition to the foregoing sets of stress-strain relations within the
fiber and the matrix regions, and the obvious requirement of stress
equilibrium which are incorporated within the finite element code, we




utilized the following boundary conditions for the representative block
0<x<Y3b, 0<y<b, -L/2<z<L/2

V=0, 7xy=0, Tyz=0 on y=0andy=Db
u =y sin (1z/L), v=0, w=-2¢2 on x=0andx=Y3b ¢))
w==%(L/2)€), 1=0, 7z =0 onz=tL/2

where all symbols in equations (1) accord with standard notation.

A
L/2’
where A denotes the deflection of the plane z = L/2 relative to z = 0, given by

v 2
A%f (QE) dz =53 @
0

oz 8L

The uniform compressive strain € in equations (1) is given by &) =

Upon selecting uy=8a the computations corresponded to a
compressive strain

== (%)’ @

Computational Details
In view of the high slenderness ratio, L/b, of the representative

rectangular block the computational scheme employed a coarse mesh to cover
the entire representative region, and a refined mesh to focus on the region
-2a<z<a.

The coarse mesh consisted of 800 layers normal to the z direction, with
each layer further subdivided into 16 area elements as shown in Figures 5a
and 5b. Figure 5a also shows the deformed configuration of the
representative block with the coarse finite elements mesh. In the coarse
mesh depicted in Figure 5b each fiber is contained within the three elements

at the upper right and lower left corners.




The stress and displacement fields were computed through the
implementation of the commercial code ABAQUS Version 5.2, using SUN
Sparcstations. The computations implemented the Von-Mises plasticity
model with an assumed isotropic hardening. The resulting contours of the
displacement component w at z = 0 are shown in Figure 6, while values of the
displacement components u and v at selected (x, y) locations and at z = 0 are
listed in Table 1. It is obvious that the contours in Figure 6 exhibit strong
variations in both x and y directions and that the displacement v attains
amplitudes comparable to those of u. Both observations demonstrate
significant departures from results predicted for layered geometries.

To focus attention on the stress and displacement fields at the mid-
plane z = 0, where they attain maximal amplitudes, the region - 2a <z < a was
subdivided by a finer mesh into 30 layers normal to z, with each layer
consisting of 116 elements as shown in Figure 7. The refined mesh allots each
fiber 39 elements adjacent to the upper right and lower left corners in that
figure.

The asymmetry in the range of z about z = 0 in the refined mesh was
chosen deliberately to assess the adequacy of the selected range - 2a <z < a.
This assessment is provided by examining the magnitudes of relative
deviations in computed values from the obvious requirements of symmetry
about rays emanating from the central point x = Y3 b/2, y=b/2. (The above
range turned out to be adequate since the computational results met those
requirements to a high degree of accuracy).

Accordingly, the displacements computed with the coarse mesh at
z = - 2a and z = a, as well as their interpolated values at locations x, y which
matched positions on the refined mesh, were employed as prescribed
boundary values for the detailed computation. For purpose of illustration,
the boundary values of w (x, y) at z = a are sketched in Figure 8.

Comparisons with predictions derived for layered geometries were
obtained by considering a rectangular block - L/2 < z < L/2 with an inner

"matrix layer" and outer "fiber layers" contained within 0<x<t/2,

Y3 b-t/2<x<V3 b, 0<y<Db, respectively, as shown in Figure 9. The equality

of V¢ requires that t =1% . The deformed shape of the layered geometry is

shown in Figure 10.




Results and Discussion
Contours of the displacement w and the stresses 1,,, Ty, and o, are

shown in Figures 11 and 12 for the linear case and in Figure 13 for the non-
linear matrix response depicted in Figure 4.

Figures 11 and 13 exhibit contours of the above mentioned components
at the mid-plane z = 0 while Figure 12 provides perspective views of the
deformed blocks between z = - a and z = a/2. For additional clarity the
displacements w(x, 0, 0) and w(x, b, 0) are plotted vs. (0<x<¥3Db)in Figures
14a and 14b.

The results shown in Figures 11 through 14 are contrasted against
predictions which correspond to layered "fiber" and "matrix" regions shown
in Figures 15 and 16. Comparative values of the largest stress components are
given in Table 2. That table lists values for circular and layered geometries,
denoted by rows labeled "C" and "L", respectively, and contains comparisons
between linear and plastic matrix response.

The predominant conclusions to be drawn from the current results are:
(1) It is erroneous to represent fibrous arrays of fiber reinforced materials
by equivalent layered media for evaluating compressive response.

(2)  The stress and displacement fields in fibrous arrays subjected to
compression are markedly non-uniform and exhibit highly localized effects,
especially near the fiber/matrix interfaces.

(3)  The shear stress 1y, which is disregarded in the layered representation,
attains magnitudes which are equivalent to those of 1,,.

(4)  Compressive failure of fiber reinforced composites may arise due to
localized effects which are overlooked by the layered model.
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Fig. 1. A detailed exposition of the compressive deformation
of fibrous composites. Note the multiple compressive
deformation bands (small arrows) and the arrested crack tip
(large arrow) in the fiber on the right and the fracture in the
left fiber. The central matrix region exhibits significantly
non-uniform deformations, with possible interfacial separation.
Lankford, Ref. [14], Figure 7a. Reprinted by permission of
The American Ceramic Society.




Fig. 2a. Hexagonally arrayed fibers.
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Fig. 2b. The representative cross-section of the hexagonal array.
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Fig. 3b. The representative volumetric block.
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Fig. 4. The in-situ non-linear shear stress-strain response of
PEEK (curve "a") and its extension to the three dimensional case
in terms of effective stress and strain (curve "e").




Fig. 5a.
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Deformation overview and coarse mesh geometry.




sectional coarse mesh.

Fig. 5b. The coss-
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Fig. 6. Contours of the displacement w at the mid-plane z

computed with the coarse mesh.
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Fig. 8. A sketch of the distributed nodal displacements, computed
with the coarse model, applied as boundary
conditions of the top surface of the fine mesh.
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Fig. 9. The equivalent layered fiber/matrix geometry.

Fig. 10. The deformed shape of the layered geometry under analogous
compressive circumstances.
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(@) The displacement w (b) Normal stress ¢,
Contours "1", "2", and "3" correspond Contours "1", "2", and "3" correspond to
tow =-9.65x 10§, 8.35 x 107, and G,, = - 27.7,1.35, and 10.3 MPa, respectively.
9.57 x 108 m, respectively.
(c) Shear stress Ty, (d) Shear stress Ty,
Contours "1", "2", and "3" correspond to Contours "1", "2", and "3" correspond to
Tz = 35.4, 209, and 248 MPa, respectively. Tyz = - 2.11, 7.3, and 101 MPa, respectively.

Fig. 11. Linear results: Displacement and stress contours in the mid
plane (z = 0) with drcular fibers geometry.
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Fig. 12. Displacement and stress contours in the region - 2a <z < a. Linear
elastic results employing the fine mesh.

(a) The displacement w (D) Gz (0) Tz (d) Ty
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(@) The displacement w
Contours "1", "2", and "3" correspond

tow =-1x107,9.43x 109, and
1x 107 m, respectively.

(c) Shear stress Ty,
Contours "1", "2", "3", and "4" correspond
to T, = 24.6, 55.0, 100.0, and
19.2 MPa, respectively.

4
i

(b) Normal stress o,
Contours "1", "2", "3", and "4" correspond

to 6,, =-15.2,-15.9,93.3, and
147 MPa, respectively.

(d) Shear stress Tyz
Contours "1", "2", "3", and "4" correspond
0 1y, =~ 35.8, - 6.1,5.82, and
79.6 MPa, respectively.

Fig. 13. Nonlinear results: Displacement and stress contours in the mid
plane (z = 0) with drcular fiber geometry.
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Fig. 14a. The displacement w vs. Xatz=0, y=0.
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Fig. 14b. The displacement w vs. Xatz=0, y=Dh.
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~ Contours "1", "2", and "3" correspond

1 (-6.84 MPa) !

N
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(b) Normal stress 6,,
Contour "1" corresponds to

=-69.9 MPa.

(a) The displacement w

tow =-53x108,47x107, and Ozz
5.28 x 108 m, respectively.
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(c) Shear stress 1y,
Contours "1", "2", and "3" correspond to

Tyz = 128, 129, and 130 MPa.

Fig. 15. Linear results: Displacement and stress contours in the
mid plane of the layered geometry.

[Note: The dashed lines represent the interfaces between "fiber" and "matrix” layers.]
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(a) The displacement w
Contours "1", "2", and "3" correspond

tow =-544x108,5.0x107, and
5.42 x 1078 m, respectively.

(b) Normal stress G,
Contours "1", "2", and "3" correspond to

0., =- 103, - 60.2, and 8.82 MPa, respectively.

(c) Shear stress Ty
Contours "1" and "2" correspond to

1., = 52.7 and 77.8 MPa, respectively.

Fig. 16. Nonlinear results: Displacement and stress contours in
the mid plane of the layered geometry.

[Note: The dashed lines represent the interfaces between

"fiber" and "matrix" layers.]




X y u [ v w
0.4000E-05 | 0.0000E+00 |-8.570E-09 0.000E+00 -1.110E-07
0.2828E-05 |0.2828E-05 |-7.417E-09 -7.866E-10 -7.670E-08
0.0000E+00 {0.4000E-05 0.000E+00 4.212E-10 0.000E+00
0.0000E+00 | 0.2000E-05 0.000E+00 4.744E-10 0.000E+00
0.0000E+00 | 0.0000E+00 0.000E+00 0.000E+00 0.000E+00
0.2000E-05 {0.0000E+00 |{-5.754E-09 0.000E+00 -5,529E-08
0.1662E-05 |0.1662E-05 |-4.977E-09 6.559E-11 -4.566E-08
0.6400E-05 |0.6000E-05 |-8.606E-09 0.000E+Q0 1.127E-07
0.4352E-05 |0.6000E-05 |-7.581E-03 0.000E+00 1.165E-08
0.2374E-05 |0.6000E-05 | -4.423E-08 0.000E+00 -8.734E-10
0.0000E+00 | 0.6000E-05 0.000E+00 0.000E+00 0.000E+00
0.0000E+00 {0.5000E-05 |[-6.104E-09 0.000E+00 0.000E+00
0.5758E-05 |0.0000E+00 |-7.338E-08 0.000E=+00 -1.852E-08
0.7868E-05 | 0.0000E+00 |-4.342E-08 0.000E+00 2.906E-08
0.1040E-04 | 0.0000E+00 0.000E+00 0.000E+00 0.000E+00
0.1040E-04 ]0.1000E-05 0.000E+00 -6.449E-09 0.000E+00
0.1040E-04 | 0.2000E-05 0.000E+00 -3.823E-10 0.000E+00
0.7572E-05 10.3172E-05 |-7.253E-09 -1.257E-09 7.897E-08
0.5300E-05 |0.2056E-05 |-5.966E-08 -1.788E-08 -8.362E-09
0.7814E-05 |0.1517E-05 | -4.802E-08 -1.064E-08 1.324E-08
0.4930E-05 [0.3910E-05 |-6.016E-08 -1.801E-08 7.548E-09
0.250SE-05 |0.4427E-05 1-4.760E-08 -1.052E-08 -1.185E-03
0.1040E-04 |0.6000E-05 0.000E+00 0.000E+00 0.000E+C0O
0.8400E-05 |0.6000E-05 |-5.379E-09 0.000E+00 5.732E-08
0.1040E-04 |0.4000E-05 0.000E+00 "3.879E-11 0.000E+00
0.8738E-05 |0.4338E-05 |-4.497E-09 -2.502E-10 4 692E-08

Table 1: .Computational results for the displacement components u, v and w
(in meters) at various positions (x; y) in the mid plane z =0. -




Linear Elastic Elastic Fiber, Plastic Matrix

Fiber (MPa) Marix (MPa) Fiber (MPa) Matrix (MPa)

Min. Max Min. Max. Min. Max Min. Max.

gxx |} -2.10 0.64 -1.57 | -1.06 -8.48 8.86 -0.87 -0.69
Cxx {C| -10.62 15.68 -5.14 3.44 -38.92 | 52.85 -2.00 1.73
Gyv (L | -23.06 {-21.39 -1.04 | -0.84 -32.42 | -1270 | -1.01 -0.47
Ovv |[C| -12.55 0.53 -6.15 4.21 -15.91 8.51 -3.06 3.05
Szz L | -75.75 -71.70 -2.41 -1.24 {-104.531{-42.73 -1.72 -0.24
Oz2 |C| -24.20 1 4239 ; -11.89 626 ||-144.81]148.45 | -3.47 2.89
Txv- |L | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Txv |C1 -1.55 2.17 -3.33 1.60 -6.20 7.30 -0.98 0.62
Txz {L | 128.03| 130.64 | 128.18 1129.41 55.50 74.37 30.53 51.03
Txz 1C[233.15 {265.88 16.16 1220.45 90.64 [198.91 9.46 70.23
Tvz (L1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tvz |C1 -9.49 11.98 078 |110.12 {f -12.99{ -3881 | 0.50 37.27

Table 2: A comparative listing of maximal and minimal stresses at the
mid-plane z = 0, for circular fibrous (C) and layered (L) geometries.




